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Abstract

1.

Species distribution models enable practitioners to analyze large datasets of en-
counter records and make predictions about species occurrence at unsurveyed
locations. In omnibus surveys that record data on multiple species simultane-
ously, species ranges are often nonoverlapping and misaligned with the admin-
istrative unit defining the spatial domain of interest (e.g., a state or province).
Consequently, some species display differentially restricted extents within a study
area. Assuming hard boundaries based on expert opinion or published range maps
to restrict species occurrence predictions implies a false sense of certainty in

model-based inferences.

. We propose a multi-species occupancy model with a spatial Gaussian process on

site-specific effects for each species as a model-based solution. Specifying inform-
ative Bayesian hyperpriors on the spatial hyperparameters encapsulates broad-
scale correlation among site occupancy probabilities for each species. We fit this
model to acoustic detection/nondetection data collected with autenomous re-
cording units during summer of 2016-2019 throughout Oregon and Washington,
USA, on 15 bat species.

. We found vast improvements in spatial predictions of spotted bat (Euderma macu-

latum), canyon bat (Parastrellus hesperus), and Brazilian free-tailed bat (Tadarida
brasiliensis) when the available environmental predictors were insufficient for
characterizing their restricted ranges within the region.

. In contrast, widespread species (Lasionycteris noctivagans, Myotis californicus,

Myotis evotis, Myotis volans) were appropriately modeled using only environmental
predictors, such as percentage forest cover and cliff and canyon cover.

. Utilizing spatial Gaussian processes within a community or multi-species model

incorporates uncertainty in range boundaries and allows for simultaneous pre-
dictions for the entire faunal assemblage even if species have nonoverlapping or
restricted ranges within a spatial domain of interest. Such modeling improvements
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1 | INTRODUCTION

Modeling the distribution of species across large geographic ex-
tents has emerged as a cornerstone practice of ecology and con-
servation biology (Elith & Leathwick, 2009; Franklin, 2010; Guisan
& Thuiller, 2005). Species distribution models (SDMs) enable prac-
titioners to analyze large datasets of encounter records and predict
species occurrence at unsurveyed locations. This capability is par-
ticularly helpful to address questions about rare and cryptic spe-
cies of uncertain conservation status where more direct methods
of counting individuals are infeasible. Advanced technologies, such
as autonomous recording units (ARUs) and camera traps, facilitate
efficient collection of occurrence data over expansive geographic
extents and for multiple species concurrently (Gibb et al., 2019;
Kucera & Barrett, 2011). Acommon inferential goal for such omnibus
surveys is to estimate distributions for multiple species simultane-
ously within a community or regional faunal assemblage to support
species conservation assessments. Multi-species datasets, however,
present analytical challenges when estimating species distributions
because extents of occurrences (sensu Gaston & Fuller, 2009), the
exterior polygons of species' ranges, are often not aligned with one
another or study regions. Ideally, inferences and predictions for each
species are limited to be within range boundaries, but appropriately
defining these boundaries is an impediment to distribution modeling
because species ranges are uncertain.

Species distributions are often predicted across arbitrary extents
(e.g., country, administrative, or ecoregional boundaries) that may
not align with biological ranges. Failing to constrain inferences based
on species' extents of occurrence could result in unrealistic predic-
tions because the entire study region is assumed to be within the
range of each assemblage member. Some approaches use published
range maps, expert opinion, or estimated convex hulls to mask out
areas thought to be beyond each species' range, where SDMs other-
wise might predict a high probability of occupancy based on environ-
mental variables (Graham & Hijmans, 2006; Ko et al., 2016; Meyer
etal,, 2017; Peterson et al., 2016; Rodhouse et al., 2015; VanDerWal
et al.,, 2009). However, these approaches are unsatisfying because
they result in hard boundaries for each species that are not biolog-
ically realistic and empirical data often show species are detected
outside assumed ranges (e.g., Peterson et al., 2016). Furthermore,
defining range boundaries becomes more onerous when considering
that species are detected imperfectly and distributions are dynamic
over time.

Alternatively, estimation of species range boundaries can be

incorporated directly into SDMs using spatial covariance functions

are essential if species distribution models are to accurately inform monitoring,
species recovery plans, and other conservation efforts.

assemblage, bats, community occupancy, North American Bat Monitoring Program, spatial

statistics, species distribution modeling, species range

that utilize proximity among detections in addition to environmen-
tal predictors to allow for data-informed spatial correlation among
occurrence probabilities. Spatial patterns in ecological data occur
at multiple scales (Levin, 1992), and species ranges result in spe-
cies distribution data having broad-scale spatial correlation. It is
well established that SDMs can benefit by accounting for spatial
correlation (Elith & Leathwick, 2009), and a variety of methods are
available to model spatial patterns in species distributions (e.g.,
Johnson et al.,, 2013; Ovaskainen et al., 2016; Rushing et al., 2019).
Incorporating spatial correlation can improve inferences by reducing
bias and increasing the predictive performance of SDMs (Guélat &
Kéry, 2018; Ovaskainen et al., 2016). However, spatial autocorrela-
tion is more than just a nuisance to be accounted for; it is also a key
source of ecological information relevant to estimating both extent
of occurrence (the range) as well as the area of occupancy within the
outer extent that is typically the subject of a SDM.

Occupancy models are widely used for analyzing encounter
datasets because they explicitly account for imperfect detection
while estimating species occurrence (MacKenzie et al., 2002). By
relying on detection/nondetection observations, occupancy models
provide a framework for analyzing data that are more readily col-
lected over large geographic extents (MacKenzie et al., 2002; Noon
et al., 2012) and for multiple species (Manley et al.,, 2005; Noon
et al., 2012)—the types of datasets that require the consideration of
uncertain and nonoverlapping species ranges. However, applications
of spatial occupancy models typically focus on accounting for fine-
scale spatial patterns (among clusters of adjacent sites) compared
with those resulting from broader spatial processes manifesting in
species range boundaries (substantial portions of the study area
with no evidence of a species). For instance, conditional autore-
gressive models account for fine-scale spatial correlation (Lichstein
et al., 2002) and are often used to incorporate spatial correlation
among adjacent sites in occupancy models (Johnson et al., 2013).
Gaussian processes, on the other hand, provide a flexible frame-
work for analyzing spatial data (Gelfand & Schliep, 2016) and may be
able to more directly model spatial patterns over large geographic
extents because they estimate a length-scale (or “effective range”)
parameter that defines a variance-covariance matrix for the site ef-
fects based on the distances between them.

Recent applications of Gaussian processes within occupancy
models use latent variable modeling to account for both spatial cor-
relation and interactions among species (Ovaskainen et al., 2016;
Tikhonov et al., 2020). However, some suggest caution in inter-
preting spatial patterns of co-occurrence as evidence of species

interactions (Blanchet et al., 2020). Another interpretation is that
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unmeasured covariates are related to the occupancy probabilities
of each species and modeling these latent variables as Gaussian
processes allow them to be spatially autocorrelated. These models
simultaneously estimate values for the unmeasured covariates (“la-
tent factors”) at each site and parameters (“factor loadings”) relat-
ing these to occupancy probabilities for each species (Ovaskainen
et al., 2016). In general, spatial correlation in ecological data is often
interpreted as resulting from unmeasured covariates but also arises
because many ecological processes are inherently spatial (Guisan &
Thuiller, 2005; Legendre & Fortin, 1989). Species ranges, for exam-
ple, can reflect species dispersal characteristics and biogeographic
barriers that may be better conceptualized by purely spatial pro-
cesses in statistical models.

We explored how broad-scale spatial patterns, such as those
resulting from species ranges, could be incorporated in occupancy
models using Gaussian processes. While previous applications of
Gaussian processes in occupancy models focused on modeling a sin-
gle time period, our approach analyzes multiple years of data and
includes temporal correlation in the spatial site-specific coefficients
for each species. This harnesses the knowledge that broad-scale
spatial patterns are similar over consecutive years but still allows
for shifts in species distributions to be estimated. Our approach es-
timates the distributions of multiple species simultaneously while
still allowing for unique spatial patterns, including range boundar-
ies, for each species. The multi-species framework is advantageous
hecause information can be shared across species when estimating
regression (e.g., Dorazio & Royle, 2005) even though the extents of
occurrences may differ across species. We were motivated to ex-
plore including broad-scale spatial patterns in occupancy models by
our analyses of multi-species acoustic data for bats in Oregon and
Washington, USA. These data were collected with ARUs from 2016
to 2019 following the protocols developed for the North American
Bat Monitoring Program (NABat; https://www.nabatmonitoring.org:
Loeb et al., 2015; Rodriguez et al., 2019) to estimate the distribu-
tions of bat species over broad spatial scales and monitor popula-
tions for changes in occupancy. We use these data to demonstrate
how Gaussian processes can improve predictions and produce more
realistic species distribution maps when fitting models for species

with differentially restricted ranges over a study area.

2 | MATERIALS AND METHODS
2.1 | Data

We used detection/nondetection data from acoustic bat surveys
conducted across Oregon and Washington, USA, during the sum-
mers of 2016-2019. The dataset was a product of NABat admin-
istered by a regional collaborative, the Northwestern Bat Hub
(Rodriguez et al., 2019, https://osucascades.edu/HERS/northweste
rn-bat-hub), in which ARUs were deployed at n = 202 sample units
following a spatially balanced random master sample of a grid-
based sampling frame (Larsen et al., 2008; Stevens & Olsen, 2004).
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Autonomous recording units passively record the echolocation calls
made by bats, and these acoustic recordings are used to identify the
bat species detected at each sample unit. Within each 10 x 10 km
grid cell (sample unit), surveys were performed at four locations and
a species was detected (1) or not (0) based on the nightly recordings
at each location. These data were used to construct “detection his-
tories” (MacKenzie et al., 2002) for each species at each sample unit.
Detections were determined via a workflow that used a combination
of automated bat call classification and manual verification (Banner
et al., 2018; Rodriguez et al., 2019). We followed the Rodriguez
et al. (2019) protocol to guide detector placement decisions and ad-
ditional details about the field survey protocol can be found in that
report.

In addition to recording bat calls, we also summarized local-scale
conditions surrounding the recorder and during the survey period for
inclusion in models as detectability covariates. We estimated vege-
tation clutter in the recording space, as clutter influences both bat
microhabitat and the ability to record identifiable bat echolocation
calls. We distinguished whether recording occurred at a water fea-
ture or not, as bats in our region often congregate around water for
drinking and foraging but not all survey locations provided a water
feature for ARU deployment. We also obtained estimates of aver-
age minimum temperature during the survey period from the 1-km
resolution Daily Surface Weather and Climatological Summaries
(DAYMET) dataset (Thornton et al., 2018), as summertime bat ac-
tivity in our region declines during cold weather events. Clutter, an
indicator for water feature, and temperature are outlined by NABat
protocols as important predictors for bat detectability when per-
forming acoustic surveys (Loeb et al., 2015).

Land cover estimates for each grid cell were used as predic-
tors for occupancy. We estimated mean percent forest cover and
cliff and canyon cover for each grid cell using the 30-m resolution
GAP/LANDFIRE National Terrestrial Ecosystems dataset (Homer
et al,, 2015). We also summarized 30-year mean annual precipita-
tion (PRISM Climate Group; Daly et al., 2008) for each grid cell as an
additional occupancy covariate. These covariates were chosen be-
cause they were identified during previous studies (e.g., Rodhouse
et al., 2015) as being important to regional bat biogeography. When
analyzing data for multiple years, we assumed that the environmen-

tal predictors for occupancy were static over time.

2.2 | Bayesian spatial occupancy model

We analyzed these data using an occupancy model that included
environmental predictors (mean forest cover, cliff/canyon cover, 30-
year mean annual precipitation) and spatially correlated site-specific
effects (analogous to frequentist “random effects”). First, we de-
scribe the model for a single year (i.e., “single-season”) with a focus
on accounting for residual spatial correlation, which could include
the patterns associated with species' ranges. The next section ex-
pands on our spatial model to include multiple years of data with

temporal correlation in the site effects over consecutive years. Let
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i=1,---,n denote the surveyed sites, which are NABat grid cells in
our data example, and k = 1, ---,K denote the different species. We

modeled occupancy for each species as

Zy ~ Bernoulli () , (1)

@ Lyy) = X + g (2)

where ® 1 denotes the probit link, X; is a row vector containing envi-
ronmental predictors for site i, a; is a vector of occupancy-level pre-
dictor coefficients for species k, and #; is a site- and species-specific
coefficient. We assumed the site-specific effects for each species were
realizations from a spatial Gaussian process to add spatial correlation
among occupancy probabilities. Therefore, the vector of site effects

for a species, qu['?ik’WQk"""?nk]'l: was specified as

0, ~ MultivariateNormal(0, Z,), (3)

where each 2,is a n X n variance-covariance matrix defined by the in-
tersite distances using the exponentiated quadratic covariance func-
tion with parameters for the marginal standard deviation, 7, and the
length-scale, p,. This defined the covariance between sites iand i’ as
tZexp( — (1/2p2) (|s; — s; || )?), where sdenotes the spatial coordinates
of site iand||s; — s;||is the Euclidean distance between the two sites (p.
501 Gelman et al., 2013).

The marginal standard deviation (z,) and length-scale (p,) control
the magnitude and smoothness of the possible realizations from a
spatial Gaussian process. We used Bayesian methods when fitting
this model and specified hyperprior distributions for 7, and p that
reflected our interest in modeling broad-scale patterns that reflect
species' ranges within the study area. The marginal standard devi-
ation controls the magnitude of variability in the site effects, and
we used Half-Normal(0, 1) hyperprior distributions for each 7. This
places the most hyperprior density on values close to zero, allow-
ing all site coefficients to be near zero if the data provide little ev-
idence of residual spatial correlation. This hyperprior also restricts
the posterior distributions for 7, away from larger values that are
not realistic based on the scale of the probit link. For the length-
scale parameters, p,, we assumed Inverse-Gamma (16.9, scale = 17.9)
hyperprior distributions. This simultaneously restricts the posterior
distribution for p, from including values that are too small or too
large based on the observed intersite distances and spatial patterns
of interest. See Appendix S1 for how we justify these informative
hyperprior distributions based on exploring visualizations of reali-
zations from spatial Gaussian processes with different parameters.

The observation component of this model accounted for imper-
fect detection of each species at occupied sites. Because manual
verification of acoustic files was used to exclude any ambiguous
species detections, we assumed no false-positive detections were
included in this analysis and only accounted for false negatives. Let

j=1,---,J;denote the surveys for site i. We modeled detections as

[Yix|Zi = 1] ~ Bernoulli(p,), (4)

o~ 1(pijk) = ijﬁk: (5)

where v; is a row vector of covariates for visit | to site i and fy is a
vector of detection coefficients. Covariates included nightly variables
(minimum temperature, day length) and environmental characteristics
in the immediate vicinity of the detector (measure of clutter, indicator
for water body) that could influence bat activity and/or detection.

For each occupancy and detection environmental predictor co-
efficient, we assumed a hierarchical structure that allowed for par-
tial pooling across species (Dorazio & Royle, 2005). That is, we let
ay, ~ MultivariateNormal(u,, Io-g)andﬁk ~ MultivariateNormal(u,, Iag)
for each species. The parameters u,, u; o, and o, are vectors of the
means and standard deviations for the coefficients. This structure
allowed information to be borrowed across species for a specific co-
efficient (e.g., the relationship between occupancy and forest cover
could be similar across species). We specified hyperprior distribu-
tions as Normal(0, 25) for the intercept means in u, and Hps Normal(0,
6.25) for the slope means in y, and Hp, and Gamma (4, rate = 1) for

each element of ¢, and o4

2.3 | Adding temporal correlation

To incorporate data from multiple years, we expanded the model
structure for the site-specific effects. While we expected similar
broad-scale spatial patterns in occupancy for a species over con-
secutive years, we also wanted to estimate different site effects
each year to allow for changes in a species' range or distribution.
To capture these characteristics, we considered the site effects for
each species as multiple, correlated realizations of a spatial Gaussian
process (Gelfand & Schliep, 2016). We assumed an autoregressive
correlation structure over time (specifically AR(1)) with correlation
parameter ¢, for each species, using Uniform(0, 1) hyperprior dis-
tributions for these parameters. Witht = 1, ---, T denoting years, the

full model became

Zyi ~ Bernoulli(y ), (6)

O M) = Xy + e (7)
[Viii|Zjse = 1] ~ Bernoulli(py,), (8)
O~ (Py) = Vieh- )

The vectors of site coefficients for each year, 'Tkrz[ﬂlkt”bkt"“’”nktl T,

were then modeled as

I BT b

M1
[ Y "'¢Iﬁzzk

ez ~ MultivariateNormal N : . (10)
BB BB B

Mt
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If there is no temporal correlation (i.e., by =0), the variance-
covariance matrix in Equation (10) is block diagonal and results in
independent realizations of the spatial Gaussian process each year.
Incorporating the correlation parameters ¢, harnessed the fact
that we expected similar broad-scale spatial patterns for a species
over consecutive years. The detection component of this model
(Equations 8 and 9) is unchanged except for the additional subscript
for each year.

We assumed the occupancy and detection coefficients () and g,
respectively) were constant over time. Any differences in occurrence
over time were modeled with the site effects from each year. The
parameterization of our model did not explicitly estimate local ex-
tinction and colonization probabilities conditional on the occupancy
state (Z,) from the previous year, as often done when fitting dynamic
occupancy models (e.g., MacKenzie et al., 2003). A Markovian struc-
tured covariate for occupancy in years t = 2,---, T could be consid-

ered in future analyses as more data become available.

2.4 | Fitting models and summarizing results

We compared inferences from our analysis with a simpler occupancy
model without the spatiotemporal Gaussian process. This “basic”
model included the same environmental predictors for occupancy
and detection but also included intercepts for occupancy that varied
hy year to account for any overall changes in occupancy over time.
We did not include these varying intercepts in the spatiotemporal
model because unigue site coefficients were estimated each year
and this allowed for differences in occupancy over time for each
species. To compare the predictive performance for the two fitted
models, we calculated the area under the receiver operating char-
acteristic curve (AUC) using the posterior distributions of the occu-
pancy probabilities (y,) and latent occupancy states (Z;,) at surveyed
sites (Zipkin et al., 2012). In general, accounting for residual spatial
correlation can improve the predictive performance of occupancy
models (e.g., Ovaskainen et al., 2016). However, the use of AUC for
SDMs has been criticized (e.g., Lobo et al., 2008), so we also visu-
ally compared maps of predicted occupancy probabilities across the
two models. These predictions were obtained for all 4,492 NABat
grid cells (sites) in Oregon and Washington. For our spatiotemporal
model, predictions are based on the site-level environmental vari-
ables and the site-specific coefficient (y;,) from the Gaussian pro-
cess. See Appendix S2 for additional details on obtaining posterior
draws for the n;, parameters at unsurveyed sites. For each species,
we created maps showing the posterior mean occupancy probability
and width of the 95% posterior interval for occupancy at each grid
cell every year. These posterior summaries help visualize the pat-
terns in occupancy over time and the associated uncertainty in the
model predictions. We compare the predicted occurrence maps to
species ranges from the U.S. Geological Survey (USGS; Gap Analysis
Project, 2018).

We used R (version 3.6.3; R Core Team, 2020) and the tidyverse
package (version 1.3.0; Wickham et al., 2019) to analyze these data.
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Models were fit with (Carpenter et al., 2017) using the rstan pack-
age (version 2.19.3; Stan Development Team, 2020). We fit models
with four independent chains of 4,000 iterations and discarded the
first half of each chain as burn-in (leaving 2,000 iterations per chain
for inference). We assessed model convergence by checking R val-
ues (Gelman & Rubin, 1992) and examining parameter traceplots for
stationarity and mixing. Posterior draws for unsurveyed sites were
obtained using functions coded in C++ and accessed in R using the
Repp (version 1.0.4.6; Eddelbuettel & Francois, 2011) and ReppEigen
(version 0.3.3.7.0; Bates & Eddelbuettel, 2013) packages. We cre-
ated the figures displaying these maps using the ggplot2 (version
3.3.0; Wickham, 2016) and sf (version 0.9-2; Pebesma, 2018) pack-
ages. Our bat dataset and code to fit models are available at https://
irma.nps.gov/DataStore/Reference/Profile/2275603.

3 | RESULTS

Our analysis included 4 years of data for 15 species, but we focus
on the 2019 results for three species to highlight how incorporat-
ing a spatial Gaussian process can affect occupancy predictions
depending on the spatial extent of species detections observed in
the data. Maps showing the estimated probabilities of occupancy for
each year and all species are available in Appendix S3. Two species
we highlight here—the Brazilian free-tailed bat (Tadarida brasilien-
sis; TABR) and the western small-footed myotis (Myotis ciliolabrum;
MYCIl)—are assumed to have restricted ranges across the study area.
The final species we focus on, the silver-haired bat (Lasionycteris hoc-
tivagans; LANQ), is widespread.

Compared with the basic model, which excluded the site-specific
effects, the spatial Gaussian process model strongly restricted the
occupancy predictions for TABR to the southwest corner of Oregon,
consistent with where this species is believed to occur within our
study area (Gap Analysis Project, 2018, see Figure 1). While this pat-
tern is evident in locations of species detections, the environmen-
tal predictors alone were not able to capture the restricted range
of TABR and the basic model produced unrealistic predictions that
were inconsistent with the observed data. The TABR occupancy pre-
dictions from the spatiotemporal analysis are consistent with the as-
sumed range from USGS, hut the spatial Gaussian process allows for
gradual changes in occupancy instead of imposing an abrupt bound-
ary in the predicted distribution (Figure 1). Additionally, in multiple
years TABR was detected in grid cells outside its assumed range
(Figure 1, Appendix S3).

Even though MYCI also has a restricted range in Oregon and
Washington, there were less substantial differences in the predic-
tions between the basic and spatiotemporal models (Figure 2). In
this case, the environmental predictors were able to capture the
broad-scale spatial pattern in species detections and appropriately
limited the larger estimated probabilities of occupancy to the east-
ern portion of this region. The n parameters for MYCI reflected its
assumed range but had little impact on the model-based predictions

of occupancy (compare basic and spatiotemporal maps in Figure 2).
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FIGURE 1 Comparison of 2019 occupancy predictions for the Brazilian free-tailed bat (Tadarida brasiliensis; TABR) from a model including
only environmental predictors (“Basic”) and one that also included a Gaussian process (“Spatiotemporal”). Occupancy posterior means (a) and
95% posterior interval width (b) are shown for both models. Naive occupancy at sampled grid cells (¢) shows which grid cells had at least one

detection in 2019. The posterior means of the spatially correlated site effects (y parameters from the spatiotemporal model) are shown in (d).
The thick line in each panel shows the assumed species range from the USGS (Gap Analysis Project, 2018)

In contrast to the other two species, LANO is widespread
throughout and does not have a restricted range in this region. For
LANO, the occupancy predictions and associated uncertainty from
the two fitted models were similar and there was little evidence for
strong patterns of residual spatial correlation (Figure 3, note the
scale of the  parameters). It may not be necessary to include the
Gaussian process when estimating occupancy for LANO because
there were no obvious differences in predictions across the two
models (Figure 3).

Including the spatiotemporal Gaussian process increased the
posterior mean AUC values for 14 of 15 species compared with the
basic model fit (Appendix S3). The only species with a lower AUC
was the Townsend's big-eared bat (Corynorhinus townsendii; COTO),
which is generally difficult to detect acoustically and had the most
posterior uncertainty for its AUC values. For the remaining species,
the magnitude of increase in AUC for the spatiotemporal occupancy
model varied. Many species had small AUC increases with the 95%
posterior intervals for this metric mostly overlapping for the two
models (e.g., LANQ). Other species showed more substantial in-
creases in AUC, indicating they had more residual spatial correla-

tion when only the environmental predictors were used to model

occupancy probabilities. Many species with larger increases in AUC
for the spatiotemporal occupancy model have restricted ranges in
Oregon and Washington, including the spotted bat (Euderma mac-
ulatum; EUMA), the canyon bat (Parastrellus hesperus, PAHE), and
TABR. The differences in AUC between the two models were most
pronounced when the included environmental predictors did not ad-
equately capture the spatial patterns in occupancy associated with
species' restricted ranges.

The species with the largest AUC increases from the spatiotem-
poral occupancy model generally also had larger estimated mar-
ginal standard deviations (r) for the associated Gaussian processes
(Figure 4a shows our three focal species). For instance, the posterior
distribution of = for TABR includes values further from zero com-
pared with that of LANO. In this way, posterior summaries for 7,
provide another way to evaluate the importance of the Gaussian pro-
cess for each species. The posterior distributions of the length-scale
(p) and temporal correlation (¢) parameters showed some variability
across species but were often similar to the assumed hyperprior dis-
tributions (Figure 4b,c). The data were unable to inform the posterior
distributions of these parameters when there was little residual spa-

tial correlation (r near zero) after accounting for the environmental
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FIGURE 2 Comparison of 2019 occupancy predictions for the western small-footed myotis (Myotis ciliolabrum; MYCI) from a model
including only environmental predictors (“Basic”) and one that also included a Gaussian process (“Spatiotemporal”). Occupancy posterior
means (a) and 95% posterior interval widths (b) are shown for both models. Naive occupancy at sampled grid cells (c) shows which grid cells
had at least one detection in 2019. The posterior means of the spatially correlated site coefficients (y parameters from the spatiotemporal
model) are shown in (d). The thick line in each panel shows the assumed species range the USGS (Gap Analysis Project, 2018)

predictors (e.g., LANO). When the Gaussian process was needed to
capture more substantial residual spatial patterns in the data, the
posterior distributions for p and ¢ deviated more from the assumed
hyperprior distributions (e.g., TABR and MYCI). The length-scale
parameters, p, were difficult to estimate in general, and their pos-
terior distributions were strongly influenced by the hyperprior dis-
tribution. The posterior distributions for ¢ were concentrated near
one for most species. As expected, this high temporal correlation
resulted in similar spatial patterns in each species' estimated occu-

pancy probabilities over time (see Appendix S3).

4 | DISCUSSION

The NABat data from Oregon and Washington exemplify the chal-
lenges associated with estimating distributions for multiple species
across broad geographic extents. Collecting data and making infer-
ences within administrative boundaries, in this case state borders,
means model predictions will likely need to account for the restricted

ranges of some species. We applied spatial Gaussian processes to

model these broad-scale spatial patterns and found that improve-
ment for inferences on range-restricted species depended on how
their extents of occurrence related to the environmental predic-
tors available for modeling. The distribution of MYCI is limited to
the eastern portion of Oregon and Washington, aligning with more
arid areas, and the spatially explicit environmental variables were
generally able to capture this geographic pattern. When the envi-
ronmental predictors were not aligned with a species’ restricted
range, however, adding a spatial Gaussian process to account for
these broad-scale spatial patterns improved predictions more sub-
stantially. For instance, the distribution limits of TABR in Oregon and
Washington are not well understood and recent acoustic detections
suggest the species occurs farther north than previously believed
(Ommundsen et al.,2017). Because TABR is a generalist species and
capable of long-distance dispersal, its range boundaries can shift
rapidly and are difficult to define (Genoways et al., 2000; McCracken
et al.,, 2018). These characteristics help explain why environmen-
tal predictors alone were inadequate when making predictions for
TABR and we needed to also include the spatial Gaussian process

to estimate its distribution. Overall, our example analysis highlights
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FIGURE 3 Comparison of 2019 occupancy predictions for the silver-haired bat (Lasionycteris noctivagans; LANO) from a model including
only environmental predictors (“Basic”) and one that also included a Gaussian process (“Spatiotemporal”). Occupancy posterior means (a) and
95% posterior interval widths (b) are shown for both models. Naive occupancy at sampled grid cells (c) shows which grid cells had at least
one detection in 2019. The posterior means of the spatially correlated site effects (y parameters from the spatiotemporal model; d) are small,

likely because LANO does not have a restricted range in this region

the importance of collecting meaningful environmental information
and incorporating spatially explicit predictors into SDMs to account
for heterogeneity in occupancy probabilities when possible. Spatial
patterns may still persist, however, and Gaussian processes provide
an approach for modeling the broad-scale spatial patterns that can
result from species having differentially restricted ranges within a
study area.

Some approaches rely on restricting inferences from SDMs to
assumed boundaries based on published range maps, expert opin-
ion, or convex hulls. Abrupt boundaries are biologically unrealistic
because rates of extinction and turnover may be higher at the edges
of species' ranges, compared with core areas (Brown et al., 1995;
Curnutt et al., 1996; Doherty et al., 2003). In contrast, using a spatial
Gaussian process does not assume a species' range is known and
instead allows it to be estimated from observed data. Additionally,
Gaussian processes allow for gradual declines in predicted occu-
pancy probabilities and can result in more uncertainty around range
borders (e.g., Figure 1 and TABR maps in Appendix S3). Relying on
assumed range boundaries for our example analysis would have re-

sulted in overly restrictive predictions because most species with

a previously published range map were detected outside these
boundaries at least once (Appendix S3). This pattern of observing
species outside their assumed ranges has been reported by others
(e.g., Peterson et al., 2016) and is consistent with NABat data from
South Carolina, USA (Neece et al., 2019). Spatial Gaussian processes
allow these range boundaries to be informed by empirical observa-
tions and updated over time, without making strong assumptions on
the potential spatial patterns in occupancy probabilities that may be
observed for each species.

We focused on accounting for the broad-scale spatial patterns
associated with species ranges, but other spatial occupancy mod-
els emphasize modeling fine-scale spatial patterns using conditional
autoregressive models (e.g., Johnson et al., 2013). In some cases,
ecological data may have spatial patterns across multiple scales si-
multaneously (Levin, 1992). We did not explore accounting for fine-
scale spatial patterns because the spatially balanced sampling design
used by NABat results in few adjacent grid cells being sampled.
However, when the available data allow, models could be fit to ac-
count for both broad-scale spatial patterns using Gaussian processes

and fine-scale patterns among adjacent sites (e.g., by also adding a
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FIGURE 4 Histograms of the posterior draws for the parameters associated with the Gaussian processes—the marginal standard
deviation (7), length-scale (p), and temporal correlation (¢). The Brazilian free-tailed bat (Tadarida brasiliensis; TABR) and western small-footed
myotis (Myotis ciliolabrum; MYCI) have restricted ranges in the study region while the silver-haired bat (Lasionycteris noctivagans; LANQ) is

widespread. The lines in each panel show the prior distributions for these parameters

conditional autoregressive model structure). Another option would
be to include a second Gaussian process with a smaller length-scale
parameter (p) to capture additional spatial patterns. This could be
a convenient approach because covariance functions for Gaussian
processes can be combined easily (Gelman et al., 2013).

Our analysis included multiple years of data for each species by
adding temporal correlation to the site-specific effects. We found
this approach greatly improved the precision of the occupancy pre-

dictions for some species (e.g., TABR) compared with those from

analyzing 1 year of data (results not shown). In particular, analyz-
ing multiple years of data resulted in much greater precision about
areas where TABR was unlikely to occur (beyond its range) and this
improved inferences about its extent of occurrence in Oregon and
Washington. The broad-scale spatial patterns were similar across
time for each species, as expected based on the relatively short
time frame examined here and high site fidelity showed by many
bat species (e.g., Barclay & Birgham, 2001; Lewis, 1995). However,

our model structure for the Gaussian processes allowed the site
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coefficients to vary over time while still leveraging the temporal
correlation in broad-scale spatial patterns when analyzing multiple
years of data. Future work should explore analyzing data collected
over longer time periods, where larger range shifts are possible, and
compare our approach to other dynamic occupancy models that ex-
plicitly estimate colonization and extinction probabilities. Because
spatial Gaussian processes in occupancy models can be computa-
tionally intensive, methods to approximate inferences (see Tikhonov
et al., 2020) may be useful if more years and/or more sites are incor-
porated into analyses. In particular, we suspect that Gaussian predic-
tive processes (Banerjee et al., 2008; Tikhonov et al., 2020) would
allow for reduced computation times without negatively impacting
inferences for broad-scale spatial patterns.

Maps depicting species distributions and how these distribu-
tions are changing over time are invaluable to many conservation
efforts. For many taxa, estimating these maps is now more feasible
because the development and increased use of technology such as
ARUs allow the requisite data to be efficiently collected over large
spatial extents. Consequently, SDMs are increasingly relied upon for
regional and continental scale monitoring (e.g., Adams et al., 2013;
Cariveau et al.,, 2019; Grant & Bradbury, 2019; Loeb et al., 2015),
assessing scenarios of climate change impacts (Thomas et al., 2004,
Wiens et al., 2009), and informing endangered species policy and
recovery plans (Cassini, 2011; Guisan et al., 2013). Improvements to
the statistical methodologies used to estimate species distributions
are crucial for accurately informing these conservation efforts.
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