
EE475 Lab #2 Fall 2005

Creating C Programs With the CodeWarrior IDE

In this lab you will use the Metrowerks CodeWarrior compiler to create, build, and run
several simple C programs. CodeWarrior is a code development environment that
supports a wide variety of processor targets, including the HC08 and HC12. We will be
using it with the MC9S12C32 processors on the Axiom MCU Project Boards in the lab.

Logging On:
1. Wake up the computer (or turn on the power if it is off).
2. Begin by pressing Ctrl+Alt+Delete (Windows XP).
3. Enter your username and password, and select the proper domain.

Launching :
Start the development application:

> Programs | Metrowerks CodeWarrior | CW12 V3.1 | CodeWarrior IDE

Setting up the CodeWarrior software project:
1. From the CodeWarrior File menu, select the New… option. The New Project

window should appear.

2. Fill in a project name (e.g., Lab2xyz, where xyz are your initials), and use the
Set… button to locate a subdirectory you can read and write:
c:\eeclasses\ee475 is a good choice. Choose the HC(S)12 New Project
Wizard and press OK.

3. Using the Wizard prompts:
a. Select the MC9S12C32 derivative
b. Select C language support
c. No PC-lint support
d. No floating point support
e. Small memory model
f. Check the boxes to select Metrowerks Full Chip Simulator

AND P&E Hardware Debugging
and then press Finish.

The project framework has now been created.

In the left pane, open all the file browse folders by pressing the "+" boxes to see all
the supporting files. Also, make sure that “P&E ICD” is the target selected in the
drop-down box at the top of the folders pane.

EE475 Lab #2 2

Compiling a simple program:
Using the browse view, locate the main.c file in the Sources group. Double-click to
launch the file in an editor window. This dummy main() routine just enables interrupts
and then traps itself in an infinite loop. Keep in mind that embedded software generally
does not "return" to a calling routine, so an infinite loop somewhere in the code is not
unusual.

Now replace the main() routine with the following:
void main(void)
{
/* This is a test program.
 * The results are meaningless.
 */
 int j;
 volatile int val;

 val=10;

 for(j=0;j<6;++j){
 val=val+j;
 }
 for(;;); /* endless loop */
}

Note that volatile int is used to prevent the compiler from eliminating the
"useless" code involving val. Also, note that the _asm() function can be used to insert
an in-line assembly language instruction, such as _asm("nop");

Save the main.c file, then select Make from the Project menu (or press the "make" icon
on the task bar).

Any compiler errors will appear in a pop-up window.

Ask for help if any of the preliminary steps did not work properly.

→ Once the program compiles correctly, try making some deliberate errors (missing
semicolons, misspelled variable names, etc.) and see what the compiler errors look like.

Connecting to the SLK board
Carefully connect the USB cable between the computer and the shiny USB receptacle on
the edge of the SLK board opposite to the microcontroller daughterboard. The USB
power LED should turn on, and the VDD LED on the microcontroller daughterboard
should light up.

Seek help if the board does not power up as expected.

EE475 Lab #2 3

Debugging the program
After the program compiles and links correctly, press the green Debug icon to launch the
simulator/debugger application. The debugger app automatically opens a variety of
windows to show the source code, disassembly, register contents, etc. You may get a
warning message indicating that the non-volatile memory on the chip will be erased: this
is OK. The LEDs on the daughterboard should turn off, except for the green power LED.

The Debugger app should show a bunch of windows, including the source code of your
main.c, the current contents of the processor registers, a disassembly of the
instructions, and some memory and data viewing windows (see below).

→ In the debugger, press the green arrow (!, start/continue) to run the program using
the debugger. After a few seconds, press the red (, stop) button. Observe the updated
views in each window.

→ Now go to the Source window in the debugger and scroll until you can see the
val=10; line. Set a breakpoint on this line by pointing with the mouse, doing a right-
click to bring up the context menu, and selecting "Set Breakpoint". A red arrow should
appear on that line in the Source window.

EE475 Lab #2 4

Select Restart in the Run menu, and observe that the simulator restarts the code and
stops at the breakpoint line. Now use the Single Step button to go through the program
one line at a time.

Things to keep in mind:

1. Each line of the C program usually executes several assembly language
instructions. Observe the assembly instructions in the Assembly window. Note
that you can use the Assembly Step button to execute the machine instructions
one by one.

2. The variables are updated in the Data window after each step.

3. The compiler generates special startup and initialization code that is executed
before turning control over to your main() routine. To see this, select Reset
from the ICD-12 menu, then start single stepping the program until you reach
your main() routine. What is the startup and initialization code for?

Running the software simulator
In addition to the hardware debugging connection, the CodeWarrior debugger app can
also perform a simulation of the chip (no hardware required). Setup the following:

1. Close the debug app (True-Time) and return to the CodeWarrior project.

2. In the drop-down box at the top of the project file pane, select Simulator instead
of P&E ICD.

3. Recompile and link your program.

4. Now re-launch the debugger app (green bug arrow).

Try running the code, setting breakpoints, etc., using the simulator.

→ Demonstrate your use of the simulator/debugger for the instructor. Can you think of
some reasons that you might choose to use the software simulator instead of the hardware
debugger?

Problems to do in the lab:
For the following lab problems you need to demonstrate a working program to get credit
for it. Have the instructor initial the verification sheet for each working assignment that
is completed.

Problem #1: (BE SURE TO SWITCH BACK TO USING THE P&E ICD
HARDWARE DEBUGGING)

(a) → Add sizeof() expressions to your main() program so that you can determine
the byte sizes used for the types examined last week in Lab #1:

EE475 Lab #2 5

char unsigned char
signed char short
short int int
long int float
double

One way to do this is to assign the result to a variable, then single-step the program to see
each result, e.g.,

val=sizeof(char);
val=sizeof(unsigned char);
val=sizeof(short);
…

(b) → Determine if the HC12 storage is little endian or big endian by saving an integer
value in your program and then observing the storage using the Memory window.

(c) → Next, observe what happens if you remove or comment-out the endless loop at the
end of your program (for(;;);). Do a single-step and see what the Assembly
window shows.

(d) → Finally, observe what happens if you change the declaration

volatile int val;

to just

int val;

Recompile the program and single-step it through the code. What did the compiler do
differently this time? Explain.

→ Demonstrate your program and results for the instructor.

Before moving on to Problem #2, keep a copy of the Problem #1 main.c file using the
following procedure:

First, re-edit the file so that it has the volatile int val declaration and the infinite
loop at the end.

In the CodeWarrior window, save the main.c file under the name (Save As…)
main1.c, then right-click on the file name in the project browser and remove it from the
Sources folder. Don't be alarmed by the warning message: the file itself will not be
deleted from the disk folder, only from the list of project files.

Next, add the main.c file back into the Sources group, open it in the editor, and delete
the statements within the main() routine. Re-save the main.c file, then go ahead with
the next problem.

EE475 Lab #2 6

Problem #2: Create a C program that blinks the two LEDs on the microcontroller
board. Write the code as a continuous loop—you might want to include a delay (do-
nothing software loop) to make each blink last longer.

To implement this program you will need to realize that:

(a) The mc9s12c32.h header file includes C definitions of the various processor
I/O ports (PORTA, PORTP, etc.) and the individual register bits.

(b) The bits in each register are numbered from zero (least significant bit) through
seven (most significant bit).

(c) The Bit 0 (zero) of Port A (PORTA, 0x0000) is connected to the cathode of LED1.
Set the Port A data direction register (DDRA, 0x0002) so that bit 0 is an output.

(d) The bit 4 of Port B (PORTB, 0x0001) is connected to the cathode of LED2. Set
the Port B data direction register (DDRB, 0x0003) so that bit 4 is an output.

(e) Locate the system copy of mc9s12c32.h in order to see all the defined values.
The include files should be somewhere like:

C:\Program Files\Metrowerks\CodeWarrior CW12_V3.1\lib\HC12c\include

Put statements in the main() routine in order to implement the flashing LEDs. A partial
skeleton is shown below:

void main(void)
{
/* Set the bits of Port A and Port B to be outputs using
 * the data direction registers DDRA and DDRB
 */
 DDRA = 0x01;
 DDRB = 0x10;

for(;;){
 PORTA=0x00;
 PORTB=0x00;
…delay somehow…
 PORTA=0x01;
 PORTB=0x10;
…delay somehow…
}/* end of endless for loop */
} /* end of main() */

It is advisable to start simple: just make a program that turns on LED1 by writing to Port
A. Then do something to turn on LED2. Incrementally add complexity until you have
both LEDs flashing.

EE475 Lab #2 7

The code fragment in Problem #2 is rather casual about the register usage: all of the bits
in Port A and Port B are affected each time there is an assignment statement like
PORTA=0x01; If those other bits were connected to other hardware features then it
wouldn’t be a good idea to change them.

Instead, consider two options for setting and clearing single bits in a register

1. Use a sequence of read-modify-write commands, e.g.,
PORTA = (PORTA | 0x01) to set bit 0 of Port A, leaving the other bits
unchanged, and PORTB = (PORTB & 0xEF) to clear only bit 4 of Port B.

2. Use the defined bits from the mc9s12c32.h file, e.g., PORTA_BIT0 = 1 and
PORTB_BIT4 = 0 .

→ Modify your program to use method 1 and observe what assembly language
instructions are created by the compiler. Comment in your report.

→ Finally, modify your program to use method 2 and again observe what assembly
language instructions are created. Again, comment in your report.

→ Demonstrate and explain your flashing LED program for the instructor.

BE SURE TO KEEP COPIES OF YOUR CODE AND INPUT/OUTPUT
EXAMPLES. Even though you may work in pairs in the lab, each student needs
to write his or her own individual report.

Lab Report: Due at THE START OF THE LAB PERIOD NEXT WEEK.

The lab report is to be written up in the Memo format. Each student should submit a
separate lab report. For each problem, write a short description of what you did to solve
the problem. Include commented C code excerpts for each problem and include them
within the memo.

Instructor Verification Sheet

EE475 Lab #2

Fall 2005

Student Name:

 Instructor Signature Date

Editor, compiler, simulator
skills demonstration.

Problem #1 runs on the HC-
12 hardware.

Problem #2 flashes LEDs.

Note: This verification sheet must be signed by the instructor and submitted with the lab
report to get any credit for the lab.

http://www.coe.montana.edu/ee/rmaher/ee475/lab memo report style.pdf

	Logging On:
	Launching :
	Setting up the CodeWarrior software project:
	Compiling a simple program:
	Connecting to the SLK board
	Debugging the program
	Running the software simulator
	Problems to do in the lab:

