EE 477 Digital Signal Processing 7b *z*-Transforms

Inverse and Deconvolution

- We have seen that two systems in cascade can be combined into a single system by multiplying $H_1(z)$ and $H_2(z)$.
- We can also take a system function H(z) and *factor* it into two or more low-order systems.
- Question: can we *divide* the system output by the system function ("deconvolve") and recover the input? γ

$$
Y(z) = H_1(z)X(z); \quad Y(z)H_2(z) = X(z)
$$

$$
Y(z) = H_1(z)H_2(z)Y(z) \implies H_1(z)H_2(z) = 1?
$$

Inverse and Deconvolve, cont.

- If we can find $H_2(z)$, it is called the *inverse* of $H_1(z)$.
- NOTE that $H_2(z)$ will not be FIR if $H_1(z)$ is FIR.
- $H₂(z)$ may represent a non-causal and/or unstable system even if $H_1(z)$ is causal and stable.

Relating $H(z)$ and $H(e^{j\omega})$

• NOTE CAREFULLY: z-transform and frequency response formulae are of identical form.

$$
H(\hat{\omega}) = \sum_{k=0}^{M} b_k e^{-j\hat{\omega}k} \qquad H(z) = \sum_{k=0}^{M} b_k z^{-k}
$$

• If we evaluate $H(z)$ for $z=e^{j\omega}$, it is clear:

$$
H(\hat{\omega}) = H(e^{j\hat{\omega}}) = H(z)\big|_{z=e^{j\omega}}
$$

EE 477 DSP Spring 2006 Maher 4 and 50 an

Properties of $z=e^{j\omega}$

- Observe $z=e^{j\omega}$ for $-\pi < \omega < \pi$: $|z|=1$, phase= $\overline{\omega}$
- •This defines a *circle* in the z-plane with radius=1: referred to as the *unit circle*

Visualizing Frequency Response

• We can observe z-transform along the unit circle to reveal the frequency response.

Poles and Zeros

- A *pole* in the z-domain is a value of *z* that "pushes up" the magnitude like a tent pole.
- A *zero* in the z-domain is a value of *z* that "pins down" the magnitude like a stake or tack.
- The pole and zero locations control the magnitude everywhere, *including along the unit circle*.

FIR Systems

- FIR systems contain only finite zeros. Poles are located at zero (and perhaps infinity).
- FIR filter design requires a careful choice of zero locations.
- Stop band has zeros on the unit circle.
- Pass band has zeros off the unit circle.

Matlab FIR Filter Design

- Matlab provides several FIR filter design tools, including: fir1, fir2, and remez
- Matlab GUI: Filter Design and Analysis Tool (FDATool)
- •Usually specify passband ripple, stopband attenuation, band edges, filter order, and f_{s}

Design Example

EE 477 DSP Spring 2006 Maher 10 and 10

Design Example (cont.)

EE 477 DSP Spring 2006 Maher 11 and 11 and 11

Symmetry and Linear Phase

- FIR systems with symmetric coefficients (*bk*=*bM-k*) have frequency responses with *linear phase*.
- Show this by grouping z-transform terms, for example:

 $\left[b_0 \left(z^3 + z^{-3} \right) + b_1 \left(z^2 + z^{-2} \right) + b_2 \left(z^1 + z^{-1} \right) + b_3 \right]$ $1 \t-1$ 2 2 z^{-2} 1 $3 \frac{-3}{1}$ $\overline{0}$ $= z^{-3} \Big| b_0 \Big(z^3 + z^{-3} \Big) + b_1 \Big(z^2 + z^{-2} \Big) + b_2 \Big(z^1 + z^{-1} \Big) + b_3 \Big|$ 6 $\overline{0}$ 5 1 4 2 3 3 2 2 1 $H(z) = b_0 + b_1 z^{-1} + b_2 z^{-2} + b_3 z^{-3} + b_2 z^{-4} + b_1 z^{-5} + b_0 z^{-4}$

Linear Phase (cont.)

• Now evaluate H(z) on unit circle:

$$
H(e^{j\hat{\omega}}) = e^{-j3\hat{\omega}} \left[b_0 \left(q^{j3\hat{\omega}} + b_1 \left(q^{j2\hat{\omega}} + b_2 \left(q^{j2\hat{\omega}} + b_2 \left(q^{j\hat{\omega}} + b_3 \right) + b_3 \right) \right) \right] \right]
$$

\n
$$
= \lim_{\text{phase of } \phi} \left[1 \left(4 \left(4 \frac{q^{j2\hat{\omega}}}{4} \right) + 4 \left(4 \left(4 \frac{q^{j2\hat{\omega}}}{4} \right) + 4 \left(4 \left(4 \frac{q^{j2\hat{\omega}}}{4} \right) + b_2 \left(4 \left(4 \frac{q^{j2\hat{\omega}}}{4} \right) + b_3 \right) \right) \right) \right]
$$

\n
$$
= e^{-j3\hat{\omega}} \left[1 \left(4 \left(4 \frac{q^{j2\hat{\omega}}}{4} \right) + 4 \left(4 \left(4 \left(4 \frac{q^{j2\hat{\omega}}}{4} \right) + b_2 \left(4 \left(4 \frac{q^{j2\hat{\omega}}}{4} \right) + b_3 \right) \right) \right) \right]
$$

•Example if M is odd:

$$
H(z) = b_0 + b_1 z^{-1} + b_2 z^{-2} + b_2 z^{-3} + b_1 z^{-4} + b_0 z^{-5}
$$

= $z^{-2.5} [b_0 (z^{2.5} + z^{-2.5}) + b_1 (z^{1.5} + z^{-1.5}) + b_2 (z^{0.5} + z^{-0.5})]$

Zero Symmetry

• For an FIR linear phase system (implies coefficient symmetry), the zeros will have a specific pattern. For each z_0 , there will be:

$$
\left\{z_0, z_0^*, \frac{1}{z_0}, \frac{1}{z_0^*}\right\}
$$

Spring 2006 Maher 2007 14