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Inverse and Deconvolution
• We have seen that two systems in cascade

can be combined into a single system by
multiplying H1(z) and H2(z).

• We can also take a system function H(z) and
factor it into two or more low-order systems.

• Question:  can we divide the system output
by the system function (“deconvolve”) and
recover the input?
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Inverse and Deconvolve, cont.

•If we can find H2(z), it is called the
inverse of H1(z).

•NOTE that H2(z) will not be FIR if H1(z)
is FIR.

•H2(z) may represent a non-causal
and/or unstable system even if H1(z) is
causal and stable.
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Relating H(z) and H(ejω)

•NOTE CAREFULLY:  z-transform and
frequency response formulae are of
identical form.

•If we evaluate H(z) for z=ejω, it is clear:
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Properties of z=ejϖ

•Observe z=ejϖ for -π< ϖ <π:  |z|=1,
phase= ϖ

•This defines a circle in the z-plane with
radius=1:  referred to as the unit circle
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Visualizing Frequency Response
• We can observe z-transform along the unit

circle to reveal the frequency response.
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Poles and Zeros

• A pole in the z-domain is a value of z that
“pushes up”the magnitude like a tent pole.

• A zero in the z-domain is a value of z that
“pins down”the magnitude like a stake or
tack.

• The pole and zero locations control the
magnitude everywhere, including along the
unit circle.
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FIR Systems

•FIR systems contain only finite zeros.
Poles are located at zero (and perhaps
infinity).

•FIR filter design requires a careful
choice of zero locations.

•Stop band has zeros on the unit circle.
•Pass band has zeros off the unit circle.
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Matlab FIR Filter Design

•Matlab provides several FIR filter design
tools, including: fir1, fir2, and
remez

•Matlab GUI:  Filter Design and Analysis
Tool (FDATool)

•Usually specify passband ripple,
stopband attenuation, band edges, filter
order, and fs
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Design Example
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Design Example (cont.)
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Symmetry and Linear Phase

•FIR systems with symmetric coefficients
(bk=bM-k) have frequency responses with
linear phase.

•Show this by grouping z-transform
terms, for example:
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Linear Phase (cont.)

•Now evaluate H(z) on unit circle:

•Example if M is odd:
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Zero Symmetry
•For an FIR linear phase system (implies

coefficient symmetry), the zeros will
have a specific pattern.  For each z0,
there will be:
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