

Unless otherwise stated, assume propagation in air, 1 atm, 20° C, c = 343 m/sec $\rho_{0}c$ = 415 Pa · sec/m

- (1) A harmonic plane wave is propagating through air at 1 atm, 20° C, with a frequency of 200 Hz. A standard sound level meter with 'A'-weighting filter reports 85 dB SPL re 20µPa.
- (a) (3 pts.) Determine the *RMS pressure* and the *pressure amplitude* for this wave.

From handout graph (NOTE that handout needs correction!): 85dBA @ 200 Hz is 105dB linear

 $P = \sqrt{2} P_e = 5.0297 \text{ Pa}$ $P_e = 20 \,\mu\text{Pa} \cdot 10^{105/20} = 3.5566 \,\text{Pa}$

 (b) (2 pts.) What would the meter report if a 'C'-weighting filter was used instead of the 'A'-weighting filter?

From handout graph (NOTE that handout needs correction!): 85dBA @ 200 Hz is 105dBC

(c) (3 pts.) Determine the wavelength.

$$
\lambda = \frac{c}{f} = \frac{343 \text{ m/sec}}{200 \text{/sec}} = 1.715 \text{ m}
$$

(d) (2 pts.) If the temperature increased to 40° C, what would the wavelength be?

$$
c_{40} = c_0 \sqrt{1 + T/273} = 331.6 \sqrt{1 + 40/273} = 355.06 \text{ m/sec}
$$

$$
\lambda_{40} = \frac{c_{40}}{f} = \frac{355.06 \text{ m/sec}}{200/\text{sec}} = 1.775 \text{ m}
$$

- (2) A small source (ka<<1) of spherical waves radiates into air at 150 Hz.
- (a) (3 pts.) At **what distance** from the source will the pressure and particle speed be 45° out of phase?

Relationship between pressure and particle speed is the *acoustic impedance*.

$$
\tan \theta = \frac{1}{kr}
$$

If $\theta = \frac{\pi}{4}$, $\tan \theta = 1$, so

$$
\Rightarrow r = \frac{1}{k} = \frac{c}{\omega} = \frac{343}{2\pi 150} = 0.36 \text{ m}
$$

(b) (3 pts.) What is the numerical value of the complex **specific acoustic impedance** at the distance determined in (a)?

At this distance,
$$
kr=1
$$
, so
\n
$$
\tilde{z} = \rho_0 c \frac{(kr)^2}{1 + (kr)^2} + j\rho_0 c \frac{kr}{1 + (kr)^2} = \frac{\rho_0 c}{2} + j \frac{\rho_0 c}{2} = 207.5 + j207.5 \text{ Pa} \cdot \text{s/m}
$$

(c) (4 pts.) The pressure amplitude is found to be 0.05 Pa at a distance of 30 cm from the source. What is the **particle speed amplitude (U)** and **particle displacement amplitude** at this distance?

$$
k = \frac{\omega}{c} = 2.7477 \text{ /m}
$$

\n
$$
kr = 0.8243
$$

\n
$$
\cos \theta = \frac{kr}{\sqrt{1 + (kr)^2}} = 0.6361
$$

\n
$$
U = \frac{P}{\rho_0 c \cos \theta} = 1.89 \times 10^{-4} \text{ m/sec}
$$

\nDisplacement Amplitude = $\frac{U}{\omega} = 2 \times 10^{-7} \text{ m}$

(3) It is necessary to obtain at least a 1 centimeter displacement amplitude in a simple mechanical loudspeaker system with the following parameters:

 R_m = mechanical resistance = 2 N s/m $m = mass = 10$ grams (0.01 kg) f(t) = applied force = $40 \cos(2\pi \cdot 100t)$ N

What is the **required stiffness** for which the steady-state displacement amplitude will be at least 1 centimeter?

Displacement amplitude (steady state) of driven oscillator: $\frac{1}{\epsilon} \ge 0.01 \,\mathrm{m}$ *Zm F* ω $\left(\omega m \pm \sqrt{Z_m^2 - R_m^2}\right)$ \Rightarrow 150.4 \leq s \leq 7745 N/m Z \Rightarrow Z_m \leq 6.3662 N · sec/m $\omega = 2\pi \cdot 100$ rad/sec $F = 40 N$ 2 \mathbf{D}^2 2 2 m $=\omega(\omega m \pm \sqrt{Z_m^2 \overline{}$ ⎠ $\omega m-\frac{s}{s}$ ⎝ $=\sqrt{R_{m}^{2}+\omega^{2}}$ + ωm m \mathbf{M}_m *m* $s = \omega(\omega m \pm \sqrt{Z_m^2 - R})$ $R_m^2 + \omega m - \frac{S}{m}$ ωιω ω ω