
EE477 Digital Signal Processing Spring 2015 

Lab #11 

Using a Fast Fourier Transform Algorithm 

Introduction 

The symmetry and periodicity properties of the discrete Fourier transform (DFT) allow a variety 
of useful and interesting decompositions.  In particular, by clever grouping and reordering of the 
complex exponential multiplications it is possible to achieve substantial computational savings 
while still obtaining the exact DFT solution (no approximation required).  Many “fast” 
algorithms have been developed for computing the DFT, and collectively these are known as 
Fast Fourier Transform (FFT) algorithms.  Always keep in mind that an FFT algorithm is not a 
different mathematical transform:  it is simply an efficient means to compute the DFT.  In this 
experiment you will use the Matlab fft() function to perform some frequency domain 
processing tasks. 

The concept of doing “real time” processing with an FFT algorithm is not really true, since the 
DFT requires an entire block of input samples to be available before processing can begin.  So, 
rather than being able to run the processing algorithm on the fly as each waveform sample 
arrives as we might with a direct form digital filter, it will be necessary to buffer a block of 
samples and then start the first FFT while still receiving the new samples as they arrive from the 
A/D and providing the output samples to the D/A.  This inherent delay, or processing latency, is 
separate from the time required to compute the FFT itself.  The Matlab implementation will be 
run on stored data anyway, so the real time processing latency is not an issue for this particular 
lab experiment. 

Short-time Fourier transform (STFT) 

One interesting use of the FFT is to implement linear time-invariant systems.  The idea is to 
break the input signal into blocks, perform the FFT on each block, multiply by a filter function in 
the frequency domain, then IFFT to reconstruct the filtered time domain signal.  Because the 
FFT provides the means to reduce the computational complexity of the DFT from order (N2) to 
order (N log2(N)), it is often feasible to do FFT-based processing for DSP systems.  Even with 
the frequency domain multiplication and the forward and inverse transform overhead, the 
computational cost of doing both the FFT and IFFT is lower than doing the equivalent 
computation with conventional time domain methods for N greater than 8 or so. 

The DFT is a frequency-sampled version of the Fourier transform, so multiplying the DFT by a 
filter function in the frequency domain is actually the equivalent of circular convolution, not 
linear convolution.  This means that the resulting time domain signal may have “time domain 
aliasing” if the effects of the circular overlap are not accounted for.  Refer to an authoritative 
DSP textbook for the details of this issue. 
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Nevertheless, for this experiment we are going to use a somewhat crude short-time processing 
algorithm.  The concept is as follows. 

(1) We will segment the input signal into overlapping blocks.  The overlap will be 50%, and 
each block will be “windowed” by a smooth raised-cosine function.  The window will be 
chosen so that the original signal can be reconstructed perfectly if no signal modification 
is done (see Figure 1). 

(2) For each windowed block, the FFT will be calculated.  This gives a spectral “snapshot” 
of what is going on during that short block of the input signal. 

(3) We can now do some modification of the FFT data, such as multiplying by a spectral 
shape (filter) or some other type of frequency-domain processing.  Assuming that we had 
a real-only input signal and we want a real-only output signal, we need to make sure that 
whatever manipulation is applied gets done in a way that will keep the complex DFT data 
in conjugate symmetric form.  That is, if we change anything in the DFT bins between 0 
and N/2, the same change needs to apply to the mirror image bins N-1 down to N/2, and 
the resulting modified DFT data must remain conjugate symmetric. 

(4) After the spectral processing, the IFFT (inverse FFT) is calculated.  The resulting block is 
then overlap-added to the output buffer, thereby reconstructing the desired signal. 

 

 

Figure 1:  Signal segmentation and overlap-add reconstruction. 

Why is it necessary to window and overlap the analysis blocks?  There are several issues here.  It 
is theoretically possible to do a huge FFT over the entire input signal, but for practical reasons 
we usually want to limit the time delay and storage memory of a real time system.  Breaking the 
signal into shorter blocks provides this opportunity.  Applying the smooth window function is 
helpful in reducing the truncation effects that otherwise would be evident in the DFT data, but 
this may or may not be important depending on the application.  Finally, the overlapping 

x[n] 

FFT performed on each 
overlapping windowed block 
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windows provide a smooth transition from one block to the next, and this is important if the 
frequency domain processing varies with time (see Exercise C below). 

The choice of FFT length, overlap amount, window shape, etc., can be made with a solid 
theoretical basis.  Consult a DSP text book for more information on the theoretical underpinnings 
of the short-time Fourier transform (STFT). 

In a practical DSP system designed for real time operation, the STFT skeleton could be 
organized as shown in Figure 2.  In the “background,” the interrupt service routines (ISRs) 
collect the input data into a buffer, and play the processed data from an output buffer.  In the 
“foreground” the FFT routine waits until a block of input data has arrived, then performs the 
window/FFT/modify/IFFT/overlap-add sequence for that block.  The foreground routine then 
waits for the 50% overlap period, and runs again on the overlapped data.  This process continues 
over and over as long as the program is running. 

 

Figure 2:  STFT skeleton program flow. 

The application code would be placed in between the FFT and the IFFT.  Your program would 
then have access to the complex DFT data for each block. 

The STFT process in Matlab will be similar, except the input and output buffers will not have 
interrupt service routines filling and emptying them.  Instead, you should write an STFT 
processing function.  The outline of such a function is given here. 

Input sample buffer 

Interrupt service routine fills modulo input buffer 

FFT buffer 

Window 

FFT 

FFT output buffer 
(modify data here) 

IFFT 

IFFT out buffer 

Output sample buffer 
Overlap-add 

Interrupt service routine empties modulo output buffer 
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function xx=block_fft(in,len) 
% block_fft(in, len) 
% Calculates windowed FFT (length len, with 50% overlap), 
%  then inverse FFT with overlap-add.  If no processing is inserted 
%  into the function below, the output should be essentially identical 
%  to the input. 
% 
% in  = input data vector 
% len = desired fft length (e.g., 1024) 
% xx  = output data vector 
 
in=in(:); 
 
% Create output buffer for overlap add 
xx=zeros(1,length(in)); 
 
% Create length “len” raised cosine window function 
wind=0.5*(1-cos(2*pi*(0:len-1)/len)); 
 
% Stride through the input with 50% overlap (len/2),  
% calculate windowed length “len” FFT of each block, 
% then inverse transform and overlap-add. 
 
for i=1:len/2:(length(in)-len) 
 
    ff=fft(wind.*in(i:(i+len-1))',len); 
% 
% …User processing of FFT data would go here… 
% 
% Overlap add the output inverse transforms 
 
    xx(i:(i+len-1))= xx(i:(i+len-1))+ ifft(ff,len); 
 
end 

 Exercise A:  Look at FFT data 

Using Matlab, show plots of the FFT magnitude and phase for the following signals.  Explain the 
results to the lab instructor (instructor check off A). 

xx = [1 zeros(1,1023)]; (length 1024 FFT) 

yy = [0 1 zeros(1,1022)]; (length 1024 FFT) 

aa = 3*sin(2*pi*(0:1023)/64); (length 1024 FFT) 

bb = 3*sin(2*pi*(0:1023)/64); (now use a length 4096 FFT) 
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Questions to think about: 

• How do the numerical results compare to your theoretical expectations? 
• What does the Matlab function unwrap() do, and how might that be helpful when 

interpreting the phase results? 
• If the FFT magnitude is zero at a particular index, is the phase meaningful? 

 Exercise B:  Run FFT/IFFT pass program 

Create your own copy of the block_fft() function given in the introduction (see the course 
web site to download the text file). 

Test you code with several different input signals. The skeleton should act like a “pass” program:  
the input data should pass through the window/FFT/IFFT/overlap-add procedure without 
deliberate modification. Verify that this is working. 

Finally, insert some Matlab instructions in the “% User processing of FFT data 
would go here…” position to change the gain of the pass program:  multiply the complex 
FFT data by 2.5.  Comment on the results (instructor check off B). 

Once you have the pass program with gain 2.5 working, take out the 2.5 multiply before working 
on Exercise C. 

Exercise C:  STFT for signal processing 

Now that the basic pass program is working, you can consider some more interesting STFT-
based processing.  In this part you will do some signal-dependent processing.  Since the DFT 
gives a complex view of the input signal’s short-time spectrum, we can take advantage of the 
spectral analysis to do some signal enhancement. 

It is common to have an input signal that is contaminated with unwanted broadband noise.  One 
way to reduce the undesired noise is to use a spectral threshold.  The algorithm compares the 
spectral magnitude in each FFT bin to a threshold value.  If the magnitude is above the threshold, 
it is assumed to be “signal” and gets passed unaltered.  On the other hand, if the measured 
magnitude in an FFT bin is below the threshold, it is assumed to be noise and the bin is set to 
zero.  If the threshold is chosen carefully, the output signal will have less audible noise than the 
input signal.  This process is known as a “de-hisser” or a spectral “noise gate.” 

In order to do the threshold test you will need to add another parameter to the block_fft() 
function: xx=block_fft(in,fftlen,thresh), and use the threshold and the FFT 
magnitude to take out the FFT bins that are below the threshold.  You will also need to 
experiment with various threshold values, and try different types of input signals to verify that 
your de-hisser is working.  Demonstrate your code by choosing an appropriate threshold value 
for the noisy speech signal on the course web site (instructor check off C). 
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Check Off Sheet 

 

Name         
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Exercise B:       

 

Exercise C:       
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